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1. Introduction

In a recent series of papers [1]–[4] we have introduced a supersymmetric quantum mechan-

ical matrix model and studied its rather intriguing properties in the planar approximation,

or, formally, in the large-N , fixed-λ limit (here N is the size of our bosonic and fermionic

matrices and λ ≡ g2N is the usual ’t Hooft coupling) [5]. In particular, the model exhibits,

at a critical value of λ, λc = 1, a discontinuous phase transition characterized by the emer-

gence of new supersymmetric vacua on the strong-coupling side of the phase transition,

and a consequent jump of Witten’s index [6] across λc.

This property was first observed [1, 2] in the lowest fermion-number sector of the

model, F = 0 (F being an exactly conserved quantum number for all values of λ) where

one new supersymmetric vacuum emerges at λ > 1. It was later realized that a similar

phenomenon also occurs at F = 2 [4], with two new supersymmetric vacua popping up at

λ > 1. In that same paper a deeper understanding of this unexpected feature was gained

by considering the λ → ∞ limit of the model. In this limit the Hamiltonian becomes

block-diagonal in both F and boson number B, with blocks of finite size N (F,B).

Furthermore, by combining the strong-coupling limit with some combinatorics argu-

ments [3], it was conjectured that the pattern found at F = 2 should generalize to all even

values of F : two new supersymmetric vacua would occur in each one of these sectors at

large λ. By going to infinite λ, and by computing suitable supertraces [3], we can also guess

which blocks should “hide” (for a given even F ) the two new ground states: those with
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B = F ± 1, a conjecture confirmed by many numerical checks. Finally, once the infinite-λ

ground states are identified, their expression at finite λ can be reconstructed through an

explicit formal operation [4], which is expected to lead to a normalizable state if and only

if λ > λc.

In this paper we consider again the λ → ∞ limit, albeit for a different purpose. We

will show that some of the finite blocks (including those where the new supersymmetric

vacua occur) can be mapped into (seemingly non-supersymmetric) one-dimensional sta-

tistical mechanics models with a finite number of sites and a periodic (cyclic) structure.

More explicitly, we will map some sectors of our model into the XXZ Heisenberg chain

with asymmetry parameter ∆ = ±1/2. Moreover, it will be argued, and demonstrated

numerically, that our system is also equivalent to a lattice gas of q-bosons in the limit

where the quantum-deformation parameter q goes to infinity.

Such kinds of equivalences are not new, the Thirring-sine-Gordon connection [7] being

a famous example; however, the equivalence discussed in this paper has two novel features:

• It connects a supersymmetric system with a (seemingly) non-supersymmetric one,

hopefully revealing hidden supersymmetric features of the latter model. As an exam-

ple, the ground state of the XXZ model with ∆ = −1/2 is known to have amazing

(partly proved, partly conjectured) properties [8] that could possibly be explained

after realizing that such a ground state is just a supersymmetric vacuum.

• It relates a rather abstract quantum mechanical matrix model, in the planar ap-

proximation, to some well known statistical system in one-space one-time, therefore

providing an a priori unexpected physical (string-like?) interpretation of the former.

In the next section we recall the definition of our model, its main physical properties,

and its large-λ limit. The equivalence with the XXZ chain and with the q-bosonic gas is

discussed in the following two sections. We will end with a summary and a discussion of

the possible consequences of this equivalence for the latter two systems.

2. A planar supersymmetric matrix model

The model is simply the N → ∞ (planar) limit of an N ×N matrix system defined by the

following supersymmetric charges and Hamiltonian:

Q = Tr[fa†(1 + ga†)], Q† = Tr[f †(1 + ga)a], (2.1)

H = {Q†, Q} = HB + HF , (2.2)

HB = Tr[a†a + g(a†
2
a + a†a2) + g2a†

2
a2] , (2.3)

HF = Tr[f †f + g(f †f(a† + a) + f †(a† + a)f)

+ g2(f †afa† + f †aa†f + f †fa†a + f †a†fa)] , (2.4)

where bosonic and fermionic destruction and creation operators satisfy

[aij , a
†
kl] = δilδjk ; {fijf

†
kl} = δilδjk ; i, j, k, l = 1, . . . N , (2.5)
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all other (anti)commutators being zero.

Models of this type result from the dimensional reduction of D = (1 + 1)-dimensional

gauge theories. For example, two-dimensional Yang-Mills gluodynamics, when reduced to

QM, is described by a free Hamiltonian HYM2
= −Tr[(a − a†)2]/2 acting on the gauge-

invariant subspace of the whole Hilbert space [9]. The Hamiltonian (2.2)-(2.4) was designed

to illustrate a new, general method [1] of finding the spectrum of gauge systems at infinite

number of colours N . It turned out, however, to have an interest of its own, by exhibiting

the following non-trivial properties:

• Since (2.4) conserves the fermionic number F = Tr[f †f ], the system can be studied

separately for each F .

• The planar model is exactly soluble in the F = 0, 1 sectors, i.e. the complete energy

spectrum and the eigenstates are available in analytic form.

• There is a discontinuous phase transition in the ’t Hooft coupling at λ = λc =

1. At this point the otherwise discrete spectrum loses its energy gap and becomes

continuous.

• An exact duality between the strong and weak coupling phases occurs in the F = 0, 1

sectors.

• The system exhibits unbroken supersymmetry, i.e. there are exact, SUSY-induced

degeneracies between bosonic (even F ) and fermionic (odd F ) eigenenergies.

• In the weak coupling phase, λ < 1, there exists only one (unpaired) SUSY vacuum. It

lies in the F = 0 sector and it is nothing else than the empty Fock state |0〉. For λ > 1,

however, the structure is much less trivial and more interesting: there are two SUSY

vacua in each bosonic sector of the model. For F = 0 the empty Fock state continues

to be a null eigenstate, but it is joined by another, non-trivial, analytically known

ground state. For higher even F , two new non-trivial vacua appear. This is possible

thanks to the rather intriguing rearrangement of the members of supermultiplets that

occurs across the phase-transition point.

We have established all these points for the F = 0, 1, 2, 3 sectors and believe that this

structure persists for arbitrary F . This expectation is borne out by considering the infinite

λ → ∞ limit of the Hamiltonian (2.4). Since this is also the limit in which our Hamiltonian

reveals the above-mentioned connections to statistical mechanics, let us recall the strong

coupling limit of our system [4] in a little more detail.

Define the (appropriately rescaled) strong coupling SUSY charges by:

QSC = lim
λ→∞

1√
λ

Q =
1√
N

Tr(fa†
2
) , Q†

SC =
1√
N

Tr(f †a2) . (2.6)

The corresponding strong-coupling Hamiltonian is just their anticommutator. Doing the

algebra carefully, and throwing away terms that do not contribute in the large-N limit, we
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find:

HSC = lim
λ→∞

1

λ
H =

1

N
Tr[a†

2
a2 + f †afa† + f †aa†f + f †fa†a + f †a†fa] . (2.7)

This can be further simplified with the aid of the “planar calculus” rules derived in [1, 4];

namely, the third and the fourth terms must be brought to normal form, giving:

f †
ijajka

†
klfli = f †

ij(a
†
klajk + δjlδkk)fli → NTr[f †f ], (2.8)

f †
ijfjka

†
klali = f †

ija
†
klfjkali → 0 . (2.9)

In the above relations we have neglected terms in which the normal ordering does not match

the trace-ordering, since such structures do not contribute to leading order in 1/N [1, 4].

In conclusion, the strong-coupling Hamiltonian reads:1

HSC = Tr[f †f +
1

N
(a†

2
a2 + a†f †af + f †a†fa)]. (2.10)

Remarkably, (2.10) conserves both F and B = Tr[a†a]. As such, the infinite Hamiltonian

matrix splits into finite blocks labelled by the number of fermionic and bosonic quanta,

(F,B). In each such sector the leading-order (i.e. planar) basis is generated by the single

trace of a product of elementary creation operators. We may thus represent the generic

state in a block of given B and F in the form:

|mi, ni〉 =
1

Nn
Tr[a†

m1

(f †)n1a†
m2

(f †)n2 . . . (f †)nk ]|0〉 ; mi, ni > 0 . (2.11)

This is a state with B =
∑

mi bosons and F =
∑

ni fermions, Nn being a normalization

factor. Owing to the Pauli principle not all configurations of {mi, ni} define a legitimate

state. The detailed rules for counting such states (Pauli-allowed necklaces) follow from

Polya’s theory and have been developed in [3]: they give the dimensionality of each block

of the strong-coupling Hamiltonian (2.10). Table 1 shows a map of the first few (F,B)

sectors together with their sizes. Since, in the strong-coupling limit, the supersymmetric

charges connect states with the same value of B+2F , taking supertraces at fixed B+2F is

a way to check whether all states with such a value of B+2F are paired into supermultiplets

or not. Such an analysis was carried out in [3] and revealed a bosonic excess by one unit

for (and only for) B + 2F = ±1(mod 6).

Using the planar rules developed in [1, 2, 4] the finite-dimensional Hamiltonian matrix

can be readily calculated in each sector. Proceeding in this way, we have discovered “ex-

perimentally” the existence of a “magic staircase” – a distinct set of sectors (labelled by

a bold face in table 1) – where the zero-energy eigenstates are located.2 Indeed the magic

sectors appear to lie at

B = F ± 1 , F = 2n ⇒ B + 2F = 3F ± 1 = 6n ± 1 , (2.12)

1To be precise HSC contains also a Tr(f†)Tr(f) term. It is subleading except when it acts on

|B = 0, F = 1〉 and plays an important role for assuring degeneracy with |B = 2, F = 0〉.
2The dimensionality of these sectors turns out to be given by Catalan’s numbers [3].
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11 1 1 6 26 91 273 728 1768 3978 8398 16796

10 1 1 5 22 73 201 497 1144 2438 4862 9226

9 1 1 5 19 55 143 335 715 1430 2704 4862

8 1 1 4 15 42 99 212 429 809 1430 2424

7 1 1 4 12 30 66 132 247 429 715 1144

6 1 1 3 10 22 42 76 132 217 335 497

5 1 1 3 7 14 26 42 66 99 143 201

4 1 1 2 5 9 14 20 30 43 55 70

3 1 1 2 4 5 7 10 12 15 19 22

2 1 1 1 2 3 3 3 4 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 1 0 1 0 1 0 1 0

B

F 0 1 2 3 4 5 6 7 8 9 10

Table 1: Sizes of gauge-invariant bases in the (F, B) sectors

in agreement with the supertrace considerations of [3]. This observation also explains the

structure of SUSY vacua in the whole strong-coupling phase. Indeed, we were able [4] to

give a (formal) way to express SUSY vacua at finite λ in terms of those at λ = ∞. The

connection is expected to lead to normalizable states only at λ > 1.

It remains, however, to understand why the strong SUSY vacua exist solely in the

magic sectors (2.12). This puzzle finds its solution upon mapping our system into the XXZ

Heisenberg chain.

3. Equivalence with the XXZ Heisenberg chain

3.1 The XXZ model

The XXZ system [10 – 12] is a one-dimensional periodic lattice of size L with a spin 1/2

variable residing on its sites. Its Hamiltonian depends on an “asymmetry” parameter ∆

and can be written in terms of Pauli’s matrices (with σ± = 1
2 (σx ± iσy)) as:

H
(∆)
XXZ = −1

2

L
∑

i=1

(

σx
i σx

i+1 + σy
i σy

i+1 + ∆ σz
i σ

z
i+1

)

= −
L

∑

i=1

(

σ+
i σ−

i+1 + σ−
i σ+

i+1 +
∆

2
σz

i σ
z
i+1

)

≡ −
(

O± +
∆

2
Oz

)

, (3.1)

where the site L + 1 is identified with the site 1. A convenient basis of states, labelled by

two sets of integers (mi, ni), is the following:

|mi, ni〉 ≡ |(0)m1(1)n1 . . . (0)mr (1)nr 〉 , r ≥ 1,mi, ni > 0 ,
∑

(mi + ni) = L , (3.2)

where a (0)m (resp. a (1)n) indicates a sequence of m (resp. n) spins pointing down (resp.

up). The state is defined up to cyclic permutations and the permutation giving the smallest
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binary number can be taken as representative. To the set (3.2) one still has to add two

states: (0)L and (1)L.

The action of Oz on such states is very simple:

Oz |mi, ni〉 = (neq − nopp) |mi, ni〉 , (3.3)

where neq (nopp) is the number of equal(opposite)-spin nearest neighbours. It is easy to

see that neq = L − 2r while nopp = 2r. Therefore:

Oz |mi, ni〉 = (L − 4r) |mi, ni〉 . (3.4)

The action of O± is only a bit more complicated:

O± |mi, ni〉 =
∑

∣

∣m′
j, n

′
j

〉

, (3.5)

where the sum extends over the sets (m′
j, n

′
j) that are obtained from (mi, ni) by interchang-

ing, in turn one by one, any pair of opposite-spin neighbours. As a result, the Hamiltonian

commutes with the z-component of the total spin and is block-diagonal with blocks of given

m =
∑

mi and n =
∑

ni (n + m = L). In conclusion:

H
(∆)
XXZ |mi, ni〉 = −∆

2
(L − 4r) |mi, ni〉 −

∑
∣

∣m′
j, n

′
j

〉

=

(

3

2
∆ L − 2∆ (L − r)

)

|mi, ni〉 −
∑

∣

∣m′
j, n

′
j

〉

. (3.6)

It is useful to define a rescaled XXZ Hamiltonian by:

H̃
(∆)
XXZ ≡ − 1

2∆
H

(∆)
XXZ =

1

4
Oz +

1

2∆
O±

=
1

4

L
∑

i=1

(

σz
i σ

z
i+1 +

2

∆
(σ+

i σ−
i+1 + σ−

i σ+
i+1)

)

, (3.7)

so that:

H̃
(∆)
XXZ |mi, ni〉 =

(

−3

4
L + (L − r)

)

|mi, ni〉 +
1

2∆

∑

∣

∣m′
j, n

′
j

〉

. (3.8)

For the special values of the asymmetry parameter ∆ = ±1
2 we get:

H̃
(±1/2)
XXZ = −3

4
L + H(±) , (3.9)

where:3

H(±) |mi, ni〉 = (L − r) |mi, ni〉 ±
∑

∣

∣m′
j, n

′
j

〉

. (3.10)

We will now argue that the strong-coupling Hamiltonian of our supersymmetric matrix

model can be mapped into H(±) for some specific values of B,F that include those of the

magic staircase.

3We are grateful to Don Zagier for having pointed out to us this simple version of the XXZ Hamiltonian

and for having suggested a possible relation to our matrix model.

– 6 –



J
H
E
P
1
1
(
2
0
0
6
)
0
3
0

3.2 Proof of the equivalence

Let us start by splitting the strong-coupling Hamiltonian (2.10) as follows:

HSC = H
(d)
SC + H

(o)
SC , (3.11)

where:

H
(d)
SC = Tr(f †f) +

1

N
Tr(a†

2
a2) , (3.12)

H
(o)
SC =

1

N

[

f †a†fa + a†f †af
]

, (3.13)

and the labels d (o) stand for diagonal (off-diagonal) pieces of the Hamiltonian.

Let us now consider the action of HSC on the generic state (2.11) whose similarity with

the XXZ states (3.2) is evident. The planar rules for doing that were discussed in [1, 2].

For H
(d)
SC we simply find (F = n):

H
(d)
SC |ni,mi〉 =

(

F +
r

∑

i=1

(mi − 1)

)

|ni,mi〉 = (L − r) |ni,mi〉 . (3.14)

The action of H
(o)
SC , on the other hand, is precisely to interchange each fermion-boson pair

of neighbours, i.e. an action very close to that of O± in the XXZ model. However, since

sign problems can arise, we have to treat various cases separately:

• F odd

In this case there are no relative signs from different cyclic orderings in (2.11) and

therefore the action of H
(o)
SC on them is exactly the same as that of O± on the

states (3.2). The relative sign of H
(d)
SC and H

(o)
SC in HSC concides with the one in

H(+). We thus obtain:

HSC ⇔ H(+) = H̃
(+1/2)
XXZ +

3

4
L = −H

(+1/2)
XXZ +

3

4
L . (3.15)

• F even and B odd

In this case different cyclic orderings in (2.11) do carry relative signs. We will argue

that, by a suitable choice of the basis, we can bring HSC to agree, up to a shift, with

H
(−1/2)
XXZ :

HSC ⇔ H(−) = H
(−1/2)
XXZ +

3

4
L . (3.16)

The argument goes as follows: for the XXZ model let us choose as basis of states:

(1111 . . . 1100 . . . 000), (1111 . . . 1010 . . . 000), . . . (3.17)

The corresponding basis for HSC is then taken to be:

|f †f †f †f † . . . f †f †a†a† . . . a†a†a†),−|f †f †f †f † . . . f †a†f †a† . . . a†a†a†〉, . . . , (3.18)
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i.e. we put in correspondence the ones (zeroes) in (3.17) with the fermions (bosons)

in (3.18), while assigning a sign (−1)k to a state in the latter set if it is obtained from

the first state by interchanging k boson-fermion pairs.

It is quite obvious that, on this convenient basis, HSC gives the same matrix elements

as H(−), modulo the possibility that HSC produces a cyclic permutation of a state in

the above basis. However, even in this case, the correspondence works fine thanks to

the fact that the relative sign (−1)p originating from Fermi statistics (where p is the

number of fermions to be interchanged) is equal to the relative sign (−1)k counting

the number of boson-fermion interchanges. This is so since taking a fermion from the

last to the first entry corresponds to an odd number of fermion-fermion and boson-

fermion interchanges, while doing the same with a boson involves an even number of

interchanges of each type. Note that for this to be true it is essential that B be odd

and F be even, and, therefore, that L be odd. The importance of L being odd was

much emphasized in [8].

• F and B even

In this case we have found no simple relation between HSC and HXXZ for any choice

of ∆.

• We may add here a side remark: in the case of F odd, if we define a new (non-

supersymmetric) Hamiltonian:

H̃SC = H
(d)
SC − H

(o)
SC , (3.19)

we also find:

H̃SC ⇔ H(−) = H
(−1/2)
XXZ +

3

4
L . (3.20)

3.3 Implications of supersymmetry on the XXZ model

The final form of our equivalences reads:

HSC(F,B) =

{

−H
(+1/2)
XXZ + 3

4L , F odd,

+H
(−1/2)
XXZ + 3

4L , F even, B odd .
(3.21)

Eq. (3.2) implies that the parameters of both systems are related as follows:

L = F + B, (3.22)

Sz =
1

2
(F − B) , (3.23)

where Sz is the conserved component of the total spin. In addition, the spectrum on the

spin side should be computed in the sector that is invariant under the lattice shifts.

We checked eqs. (3.21) for all sectors with 5 ≤ F + B ≤ 9. Everything works as

expected, including the magic sectors with a zero eigenvalue. Since the spectrum of HSC

is positive semi-definite, the 2nd of eqs. (3.21) gives a simple and elegant proof that, for L

odd, the states considered in [8] are indeed ground states of the XXZ chain. The fact that
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they have Sz = ±1
2 just corresponds to our SUSY ground states having B = F ± 1 and F

even. Moreover, for sectors with F and B even, where the equivalence is not expected to

work, we indeed find different spectra in the two models.

Supersymmetry also implies that the (non-vanishing) spectrum of HSC in the sector

(F,B) has to be contained in the spectra of the “neighbouring” sectors with (F ∓1, B±2).

If we take B odd, B ± 2 is also odd and therefore we are always in a situation in which we

are able to connect HSC(F,B) to HXXZ(n,m). Obviously, n = F and m = B are conserved

by HXXZ as well as by HSC. After some trivial algebra, we get the following predictions

(with integer µ and ν ensuring even/odd m and n respectively):

1. The spectrum of H
(+1/2)
XXZ (2ν + 1, 2µ + 1) is contained in the combined spectra of

−H
(−1/2)
XXZ (2ν, 2µ + 3) − 3/4 and −H

(−1/2)
XXZ (2ν + 2, 2µ − 1) + 3/4,

and:

2. The excited spectrum of H
(−1/2)
XXZ (2ν, 2µ + 1) is contained in the combined spectra of

−H
(+1/2)
XXZ (2ν − 1, 2µ + 3) + 3/4 and −H

(+1/2)
XXZ (2ν + 1, 2µ − 1) − 3/4.

Since the HXXZ(n,m) Hamiltonian is symmetric under the exchange of m and n, all

variations of the above relations resulting from the interchange m ↔ n are also valid.

We made extensive numerical checks of these (to our knowledge novel) relations between

different XXZ models at different values of ∆.

3.4 Bethe ansatz solutions for the lower sectors

of the XXZ chain

The XXZ chain is integrable [12]. In particular the eigenenergies of HXXZ(∆) are given

exactly by the Bethe ansatz [10, 13]:

EXXZ(∆) = −L
∆

2
+ 2m∆ − 2

m
∑

j=1

cos pj , (3.24)

where the momenta −π < pj < π satisfy the following set of Bethe equations:

eiLpj = (−1)m−1
m
∏

l=1,l 6=j

ei(pj−pl)
eipl + e−ipj − 2∆

eipj + e−ipl − 2∆
, j = 1, . . . ,m. (3.25)

With m denoting the number of down spins in a chain. For the supersymmetric model this

translates into

ESC = F + 2
∑B

j=1 cos pj, for F odd , ∆ = +
1

2
(3.26)

ESC = F − 2
∑B

j=1 cos pj, for F even, and B odd , ∆ = −1

2
. (3.27)

Given the Bethe momenta pi, all eigenvectors can also be explicitly constructed. The whole

problem reduces therefore to the solution of the non-linear equations (3.25). Consequently,

the existence of the magic staircase with its supersymmetric vacua follows directly from
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(F,B) N (F,B) p1/π p2/π p4/π p6/π

(4, 3) 5 0.0 1/3

(4, 5) 14 0.0 0.260669 0.558585

(6, 5) 42 0.0 0.210767 0.432222

(6, 7) 132 0.0 0.178899 0.364275 0.583645

Table 2: Bethe momenta of the supersymmetric vacua in some of the lowest magic (F, B) sectors,

see table 1

the Bethe ansatz solution of the XXZ chain. The literature on the latter subject is huge,

see e.g. [12]–[16] for more references. We shall content ourselves here with formulating only

an “ansatz within the Bethe ansatz”, which reduces the number of Bethe momenta needed

to find our SUSY vacua. Solving numerically eq. (3.25) for a few low-F magic sectors, we

have found that the zero-energy momenta satisfy (see table 2):

p1 = 0, p2k+1 = −p2k, k = 1, . . . , (B − 1)/2. (3.28)

In words, there is always one zero momentum, and the remaining ones come in pairs

with opposite sign.4 We conjecture that this configuration gives the zero-energy state for

arbitrary B = F ± 1 and even F .

It is perhaps amusing that the ansatz (3.28) allows the Bethe phase factors to be

derived for the first three vacua listed in table 2 in analytic form. Assuming that they

correspond to zero-energy eigenstates, we look for simultaneous solutions of eqs. (3.25) and

E(F,B) = 0. This problem can be solved algebraically. Defining xi = eipi , we find:

F = 4, B = 3 :

x2 =
1

2
(1 + i

√
3)

F = 4, B = 5 :

x2 =
1

64

(

16 − i
√

2

√

15 +
√

33(7 −
√

33)

+4

√

−16(3 +
√

33) + i2
√

2

√

15 +
√

33(9 +
√

33)

)

x4 =
1

64

(

16 + i
√

2

√

15 +
√

33(7 −
√

33)

−4

√

−16(3 +
√

33) − i2
√

2

√

15 +
√

33(9 +
√

33)

)

4Recall that the magic sectors only occur for odd values of B.
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F = 6, B = 5 :

x2 =
1

72

(

36 + i
√

2

√

11 +
√

13(7 +
√

13)

+6
√

2

√

6(−3 +
√

13) + i
√

2

√

11 +
√

13(−5 +
√

13)

)

x4 =
1

72

(

36 + i
√

2

√

11 +
√

13(7 +
√

13)

−6
√

2

√

6(−3 +
√

13) + i
√

2

√

11 +
√

13(−5 +
√

13)

)

,

corresponding to the algebraic representations of the phase factors given in table 2. Al-

though it is not self-evident, it can be proved algebraically that the above numbers have

modulus 1.

3.5 The Razumov-Stroganov states and supersymmetry

Interestingly, the magic staircase, with its supersymmetric vacua, connects directly to

properties of one-dimensional spin chains. Beginning with the classic paper of Baxter [11],

some simple eigenvalues of the XXZ Heisenberg chain were discovered. In particular, Baxter

has shown the existence of a ground state with Sz = ±1
2 and energy −3

4L for infinite L

and ∆ = −1
2 . More recently, Razumov and Stroganov [8] have extended this result to any

finite, odd L and have made several conjectures on the properties of the eigenvector that

corresponds to the above-mentioned ground state (for recent developments see, e.g. [15]).

It follows directly from (3.21) and (3.23) that these states are nothing but the su-

persymmetric vacua of our planar model with B = F ± 1, F even. Hence Razumov and

Stroganov’s above-mentioned result guarantees the existence of one bosonic SUSY vac-

uum in each one of our magic sectors. Hopefully, this hidden supersymmetry will help

understanding and/or proving the other amazing (and so far mostly conjectured by RS)

properties of Baxter’s ground states.

It is tempting to say that the two families of vacua, i.e. those with some given even F

and B = F ± 1, are related by the usual inversion, σi → −σi, symmetry. However, this

transformation has to be coupled with a change in the lattice size L → L + 2. This brings

the issue of whether a change of L should be considered as a symmetry. At first sight this

looks a little premature, and in fact, for the above vacuum solutions, it is pure semantics.

However, this is no longer the case when we consider the implications of supersymmetry

on the whole spectrum, including all excited states. The supersymmery generators act as

F → F ± 1 and B → B ∓ 2, corresponding to L → L ∓ 1. Therefore they do relate the

spectra of excited states on different lattices: the XXZ chain turns out to have a hidden

supersymmetry with different members of its dynamical supermultiplets living on different

lattices!
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4. Equivalence with a q-bosonic gas

Surprisingly, our infinite-coupling planar system is exactly equivalent to yet another, and

apparently entirely different, model. To expose this equivalence we use the original labelling

of planar states with F fermions

|n1, n2, . . . , nF 〉 =
1

Nn
Tr[a†

n1

f †a†
n2

f † . . . a†
nF

f †]|0〉 . (4.1)

Consider now the action of the strong-coupling Hamiltonian,

HSC = Tr[f †f +
1

N
(a†

2
a2 + a†f †af + f †a†fa)] , (4.2)

on a state (4.1). Using the planar rules developed in [1]–[4], it is easy to show that the first

two terms do not change the initial state and give rise to the following diagonal elements:

〈n1, n2, . . . , nF |HSC|n1, n2, . . . , nF 〉 = F +

F
∑

i=1

(ni − 1 + δni,0) = B +

F
∑

i=1

δni,0 . (4.3)

Using the same planar rules, the remaining matrix elements can be easily obtained from

the action of the last two terms, e.g.

Tr[a†f †af ]|n1, n2, . . . , nF 〉 =
Nn1

Nn
|n1 − 1, n2, . . . , nF + 1〉 +

Nn2

Nn
|n1 + 1, n2 − 1, . . . , nF 〉 +

Nn3

Nn
|n1, n2 + 1, n3 − 1, . . . , nF 〉 + . . . +

NnF

Nn
|n1, n2, . . . , nF−1 + 1, nF − 1〉 ,

(4.4)

i.e. this operator annihilates one bosonic quantum in a group i and adds one at i − 1,

meaning at the cyclic left of i, i = 1, . . . , F . Similarly the last term moves one quantum

to the cyclic right of i. Here, Nn (Nnf
) are the normalization factors of the initial (final)

states of our basis. They contain some powers of N and degeneracy factors ds. When

calculating matrix elements of the Hamiltonian HSC, all N factors cancel with the 1/N

in (4.2) and we are left only with the square roots of the ratios of corresponding ds factors.

It turns out that this Hamiltonian also describes the following system. Consider a

one-dimensional, periodic lattice of length F . Put at each lattice site a bosonic degree of

freedom described by the creation/annihilation (c/a) operators ai, i = 1, . . . , F and use the

harmonic oscillator basis. The states |n1, n2, . . . , nF 〉 are described by the configuration of

F integer occupation numbers as before.

The new Hamiltonian reads

H = B +

F
∑

i=1

δNi,0 +

F
∑

i=1

bib
†
i+1 + bib

†
i−1, (4.5)

where Ni is the usual operator of the number of quanta at a site i, Ni = a†iai. In words:

the second term counts the number nzer of empty (unoccupied) sites in a given basis

state and returns this state multiplied by nzer. B is the total number of bosonic quanta,
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B = n1 + n2 + . . .+ nF . The b†i (bi) operators create (annihilate) one quantum without the

usual
√

n factors. Omitting momentarily the index i:

b†|n〉 = |n + 1〉, b|n〉 = |n − 1〉, b|0〉 ≡ 0 . (4.6)

In terms of the usual a, a† operators they read:

b† = a†
1√

N + 1
, b =

1√
N + 1

a, and b|0〉 ≡ 0 , (4.7)

where again N = a†a. The b operators have non-standard commutation relations:

[b, b†] = δN,0 . (4.8)

This Hamiltonian conserves the total bosonic number, as before. It is also invariant

under lattice shifts and, consequently, commutes with the lattice-shift operator U defined

as:

U |n1, n2, . . . , nF 〉 = |n2, n3, . . . , nF , n1 .〉 (4.9)

Therefore, the Hilbert space of states with fixed B can be further split into sectors with

fixed eigenvalues of U :

λ
(m)
U = eim 2π

F , m = 1, 2, . . . , F . (4.10)

We claim that the spectrum of the above H, in the sector with λU = (−1)F−1, exactly

coincides with our spectrum of HSC, for all F and B.

The main steps in understanding this equivalence are as follows:

• Our planar states (4.1) are defined modulo ZF shifts. Without fermionic degrees of

freedom this would be taken care of by requiring λU = 1 for the bosonic system. The

minus sign is the consequence of the fermionic operators in (4.1): under the ZF shifts

they acquire the phase (−1)F−1.

• For even F , the projection for the λU = −1 sector plays another important role.

Namely, it removes states that are not allowed by the Pauli principle.

• Finally, the degeneracy factors required in (4.4) are correctly taken into account by

the linear combinations corresponding to the condition λU = (−1)F−1.

The last point is particularly non-trivial. We have therefore double-checked this equivalence

by diagonalizing both Hamiltonians in a range of sectors: 3 ≤ F ≤ 7, 3 ≤ B ≤ 7. All

spectra are indeed identical, including again the supersymmetric vacua in the magic sectors.

Notice that this second equivalence also works for the “bad” sectors with both F and B

even. These are the only sectors where the Pauli principle is effective and eliminates some

of the planar states. This is why there is no XXZ equivalence in these sectors. Nevertheless,

because of the λU = −1 projection, the bosonic-model equivalence applies to these cases

as well.
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Interestingly, the system of “funny” b and b† operators turns out to be a particular limit

of the so-called q-deformed harmonic oscillator algebra, well known in the literature [17, 18].

The transitions (4.6) (without the square roots) are referred to as assisted transitions.

The q-boson operators satisfy (for one degree of freedom)

bb† − q−2b†b = 1, [N, b] = −b, [N, b†] = b† , (4.11)

with N = a†a, the usual occupation number operator. The b, b† operators are related to

the standard a, a† by

b =

√

[N + 1]q
N + 1

a, b† = a†
√

[N + 1]q
N + 1

, (4.12)

where:

[x]q ≡ 1 − q−2x

1 − q−2
. (4.13)

An alternative form of the commutation relations reads:

[b, b†] = q−2N . (4.14)

It can readily be checked that the usual harmonic oscillator algebra is recovered in the

limit q → 1, b, b† → a, a†. On the other hand, in the limit q → ∞, b and b† become our

c/a operators satisfying (4.6)–(4.8).

An important point is that the q-bosonic Hamiltonian without the commutator (or δ)

term in (4.5) is exactly soluble for all values of the deformation parameter q. However, with

the additional δ term, it is not. On the other hand, given the present chain of equivalences,

we see that the above non-linear system of q = ∞-bosons is soluble in terms of the Bethe

ansatz for the XXZ chain. Finally, and similarly to the latter case, the equivalence we

observed exposes a hidden, unbroken supersymmetry of ∞-bosons with supersymmetric

partners living on lattices of different sizes.

5. Discussion

This article is the third in a series studying the quantum mechanics of a simple super-

symmetric matrix model. Designed originally to illustrate the usefulness of the large-N

approximation directly in terms of a Hamiltonian and a Hilbert space, the model turned

out to have a very rich physics by itself, as amply illustrated in [1]–[4].

Here we have uncovered an even more intriguing aspect of this model: its connection,

in the infinite ’t Hooft-coupling limit, to one-dimensional statistical systems in which su-

persymmetry, if present, is very well concealed. We have found that our supersymmetric

planar model is exactly equivalent to two such systems: the quantum XXZ Heisenberg

chain, and a lattice gas of q-bosons.

The intriguing pattern of strong coupling vacua discovered in the matrix model finds its

explanation in the unusually simple ground states of the XXZ chain found by Baxter more
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than thirty years ago. Vice versa, the XXZ chain turns out to have a hidden supersymmetry,

which explains a host of degeneracies between seemingly unrelated energy eigenstates.

Interestingly, the supersymmetry transformations change the number of lattice sites, so

that different members of the supermultiplets live on different lattices. But even within a

single sector/lattice, supersymmetry may turn out to be a powerful tool for studying the

properties of the ground state and for understanding the meaning of the RS conjectures [8].

The fact that such ground states are annihilated by two supercharge operators should imply

distinct properties for them, while finding an operator with the right algebra would allow

to generate the full “staircase” of ground states starting from the lowest and simplest ones.

The second system, a gas of q-bosons in the limit of an infinite deformation parameter

q, is equivalent to our matrix model to an even greater degree than the Heisenberg chain.

While the equivalence with the XXZ model holds only for a subset of all sectors of the

Hilbert space, the ∞-bosonic gas is equivalent in all sectors of conserved boson number

and for all lattice sizes. To the best of our knowledge, the specific Hamiltonian of the

bosonic gas was unsolved till now; but in view of our chain of equivalences, the system

should turn out to be actually soluble (e.g. via the Bethe ansatz for the XXZ chain).

Finally, exact solubility of the XXZ model directly implies that same property for

our large-N , supersymmetric matrix model at infinite ’t Hooft coupling and, therefore, in

“three quarters” of its fermionic sectors (since we have found no correspondence for the

even-B, even-F sectors). There are also indications that this solubility can be extended to

the whole strong-coupling phase using the technique developed in [4]. The reverse is also

an interesting question: are there statistical systems that can be mapped into our matrix

model at finite ’t Hooft coupling?

Recently relations between the field theories and spin chains have become the subject

of much interest and excitement in connection with the AdS/CFT correspondence, which

opens a new way of studying gauge theories [19]-[24].5 In particular, the mapping between

the N = 4 supersymmetric Yang-Mills theory and the XXZ chain with ∆ = 1/2 has been

discussed by Belitsky et al. [20]. It is perhaps not an accident that we find a similar

gauge-spin relation in our much simpler model.
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Note added in proofs

After this paper had been submitted we were informed by Jan de Gier that a “hidden”

supersymmetry of the XXZ spin chain had already been pointed out in ref. [25] and further

studied in later work (e.g. in [26]). It looks however that, while in those papers super-

symmetry is realized non-linearly just in terms of fermionic variables, in our case it takes

a simpler form directly in terms of an equal number of elementary bosonic and fermionic

quanta. We are grateful to Dr. de Gier for this information.
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